Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation.

نویسندگان

  • Simona Pilotto
  • Valentina Speranzini
  • Marcello Tortorici
  • Dominique Durand
  • Alexander Fish
  • Sergio Valente
  • Federico Forneris
  • Antonello Mai
  • Titia K Sixma
  • Patrice Vachette
  • Andrea Mattevi
چکیده

With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemical and biophysical characterizations of nucleosome binding and structural elucidation by small-angle X-ray scattering, which was extensively validated through binding assays and site-directed mutagenesis of functional interfaces. Our results suggest that LSD1-CoREST functions as an ergonomic clamp that induces the detachment of the H3 histone tail from the nucleosomal DNA to make it available for capture by the enzyme active site. The key notion emerging from these studies is the inherently competitive nature of the binding interactions because nucleosome tails, chromatin modifiers, transcription factors, and DNA represent sites for multiple and often mutually exclusive interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase.

Histone methylation regulates diverse chromatin-templated processes, including transcription. Many transcriptional corepressor complexes contain lysine-specific demethylase 1 (LSD1) and CoREST that collaborate to demethylate mono- and dimethylated H3-K4 of nucleosomes. Here, we report the crystal structure of the LSD1-CoREST complex. LSD1-CoREST forms an elongated structure with a long stalk co...

متن کامل

Antagonistic actions of Rcor proteins regulate LSD1 activity and cellular differentiation.

Lysine-specific demethylase 1 (LSD1) demethylates nucleosomal histone H3 lysine 4 (H3K4) residues in collaboration with the corepressor CoREST/REST corepressor 1 (Rcor1) and regulates cell fates by epigenetically repressing gene targets. The balanced regulation of this demethylase, if any, is however unknown. We now demonstrate the actions of two other Rcor paralogs, Rcor2 and Rcor3, in regulat...

متن کامل

Molecular dynamics simulations indicate an induced-fit mechanism for LSD1/CoREST-H3-histone molecular recognition

BACKGROUND Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could he...

متن کامل

Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex

The promoter regions of active genes in the eukaryotic genome typically contain nucleosomes post-translationally modified with a trimethyl mark on histone H3 lysine 4 (H3K4), while transcriptional enhancers are marked with monomethylated H3K4. The flavin-dependent monoamine oxidase LSD1 (lysine-specific demethylase 1, also known as KDM1) demethylates mono- and dimethylated H3K4 in peptide subst...

متن کامل

Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1

Posttranslational modifications of histone N-terminal tails impact chromatin structure and gene transcription. While the extent of histone acetylation is determined by both acetyltransferases and deacetylases, it has been unclear whether histone methylation is also regulated by enzymes with opposing activities. Here, we provide evidence that LSD1 (KIAA0601), a nuclear homolog of amine oxidases,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 9  شماره 

صفحات  -

تاریخ انتشار 2015